

Pesaje Dinámico en Carreteras

Dr. Manuel de Jesús Fabela Gallegos Octubre 09, 2018

Introducción. Vehículos de carretera

- Satisfacen la necesidad de desplazar bienes y/o personas. Imprescindibles en la actualidad.
- Su operación requiere de un conductor y de infraestructura carretera para transitar, sujeta a las condiciones del entorno
- El tránsito se sustenta en aspectos básicos como:
 - Seguridad vial (convivencia del sistema de transporte)
 - Uso adecuado de infraestructura (conservación)
 - Productividad y sustentabilidad del transporte
 - Protección al medio ambiente

Autotransporte

- Características:
 - Vehículos de grandes dimensiones
 - Alta capacidad de carga / pasajeros
 - Elevada potencialidad de daño en accidentes
 - Gran potencialidad de daño a infraestructura
- Sobrepeso: Preocupación agudizada por:
 - Siniestralidad y severidad de accidentes
 - Deterioro de caminos
- Dimensiones y operación
 - Compatibilidad de geometría de vehículos y carreteras

Autotransporte...

- Regulación: Establecer criterios para armonizar los elementos del sistema de transporte
 - Conductor
 - Vehículo
 - Infraestructura (entorno)
- Principal Norma reguladora: NOM-012-SCT-2
 - Definiciones relevantes de unidades vehiculares
 - Clasificación de configuraciones vehiculares
 - Especificación de límites de pesos y dimensiones
 - Evaluación de la conformidad, verificación del cumplimiento

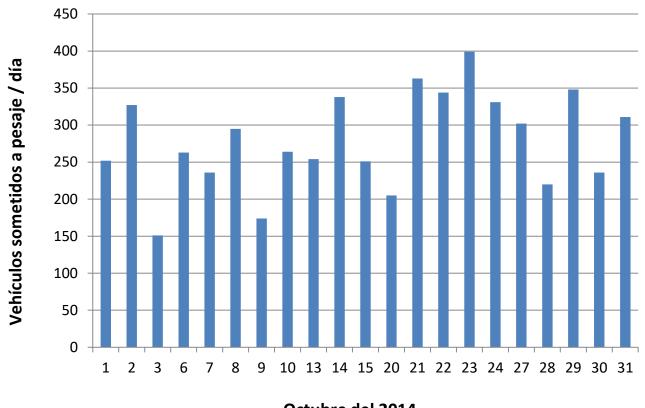
Autotransporte...

Clasificación y detalles característicos de las configuraciones de doble remolque.

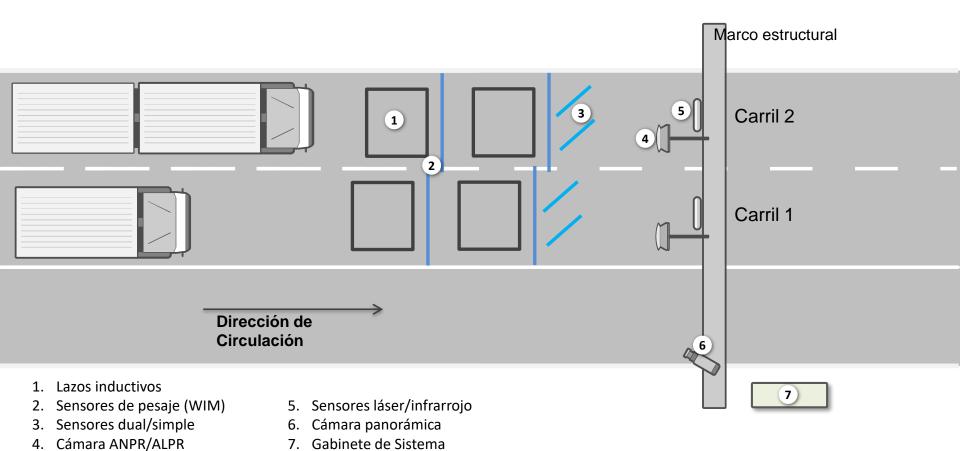
Gladinadion y detailed daractivities de las comigaraciones de debie remeigae.					
Esquema	Nomenclatura	No. de ejes	No. de llantas*	Largo máx., [m]	Peso máx., [ton]
	T2S1R2	5	18	31,0	47,5
	T2S1R3	6	22	31,0	54,5
	T2S2R2	6	22	31,0	54,5
	T3S1R2	6	22	31,0	54,5
	T3S1R3	7	26	31,0	60,5
	T3S2R2	7	26	31,0	60,5
	T3S2R4	9	34	31,0	66,5
	T3S2R3	8	30	31,0	63,0
	T3S3S2	8	30	25,0	60,0
	T2S2S2	6	22	31,0	51,5
*No se considera el uso de llantas de h	T3S2S2	7	26	31,0	58,5

^{*}No se considera el uso de llantas de base ancha en sustitución del arreglo dual.

Verificación del peso vehicular


- Determinación del peso para determinar excedentes superiores a 50 kg (490 N)
- Procedimiento de pesaje tradicional:
 - Determinación de peso total (PBV)
 - Básculas estáticas
 - Alta exactitud (± 10 kg)
- Requerimiento de operación: Colocar vehículo sobre báscula y mantenerlo quieto
- Tiempo invertido: 5 min a 10 min / vehículo
- Selección discreta, por sospecha

Verificación del peso vehicular...


Pesaje en movimiento (WIM)

- Técnica alterna, sin interrupción del flujo vehicular
- Pesaje de todo vehículo circulante (1 a 2 s/veh/carril)
- Distintas tecnologías disponibles
- Capacidad de determinar peso por eje o lado de eje
- Posible medición de parámetros de operación
- Combinación con esquemas de medición de dimensiones
- Combinación con esquemas de identificación

Parámetros de medición

- Peso
 - Total, por eje, por rueda
- Ejes
 - Número, grupos
- Arreglo de llantas
 - Dual, sencilla
- Dimensiones
 - Largo, alto, ancho

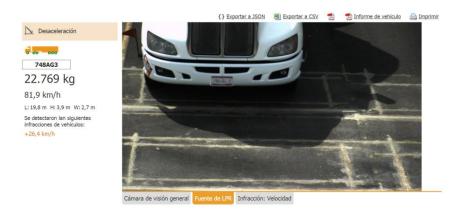
- Operación
 - Velocidad, carril, sentido de flujo
- Identificación
 - Placa (ANPR, ALPR)
- Comunicación
 - Almacenamiento, bases de datos, comparación, despliegue WEB

Proyecto de evaluación

- Pista de pruebas del Centro Experimental Nacional de Innovación Tecnológica para la Seguridad Vehicular del IMT
 - Óvalo principal de 2 km de longitud

Centro Experimental Nacional de Innovación Tecnológica para la Seguridad Vehicular

- (CENIT-Seguridad Vehicular)
 - Pista oval de aproximadamente 2 km de longitud (1950 m)
 - Ancho general 7 m (2 carriles de 3,5 m)
 - Rectas de 500 m y curvas de 150 m
 - Pendiente longitudinal de 1,13% máx.
 - Pendiente transversal (bombeo) 2%
 - Curva circular peraltada 10%
 - Pistas circulares planas de 150 m y 60 m de radio
 - Sección recta de 14 m de ancho, 400 m de longitud
 - Coeficiente promedio de fricción de 0,65

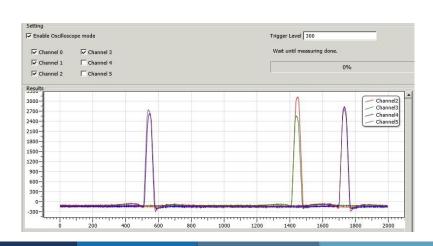


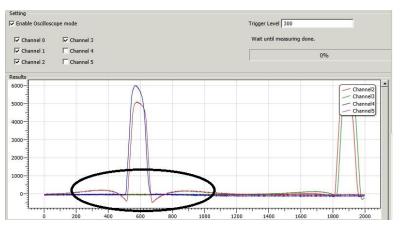
4NDA25 12.551 kg

38,6 km/h L: 10,3 m H: 3 m W: 2,4 m

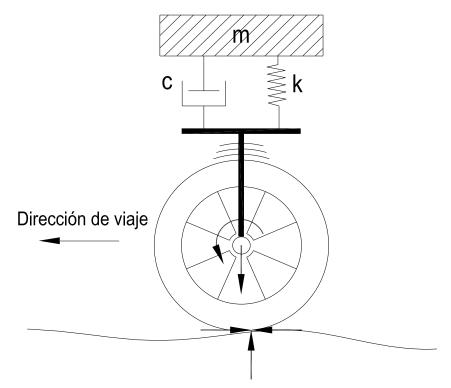
Se detectaron lan siguientes infracciones de vehículos:

+0,8% (GVW) +4,5% (#4-5)





- Algunos resultados:
 - Velocidad. 95% de mediciones ±3,3% (±1,3 km/h)
 - Peso PBV. 95% de mediciones ± 14% (1ra)
 - Peso PBV. 95% de mediciones ± 8% (2da)
 - Peso PBV. 95% de mediciones ± 4% (3ra)



Sobre el pesaje dinámico

Interacción dinámica entre llantas y superficie del camino

Sobre el pesaje dinámico...

- Realmente, ¿qué se mide?
- ¿Qué se requiere, peso o masa?
- Peso
 - Producto de masa por valor de aceleración de la gravedad
 P = m·g
 - Dependiente del valor local de g
- Masa
 - Valor inmune a condiciones físicas y topográficas
 - Determinación indirecta a partir del peso

Sobre instalación y operación

- Acondicionamiento del sitio de acuerdo a recomendaciones y prácticas recomendables (ASTM E-1318 / COST 323, PROY-NOM-198-SCFI-2017)
 - Selección del sitio de ubicación
 - Proceso de instalación
 - Preparación física de infraestructura y superficie
 - Puesta a punto, procesos de calibración y verificación
- ilmportante!
 - Manejo de sensibilidad de sensores
 - Algoritmos de estimación de masa
 - Verificación de capacidad estructural con criterios de deflexión y espesor de capas

A considerar:

- Se hace referencia a peso, pero se requiere masa
- Medición directa de la masa de los vehículos en circulación, no es una tarea práctica sencilla
- La medición del "peso" a través de la fuerza de interacción dinámica entre llantas – camino
- Sistemas de pesaje en movimiento con potencial de aplicación al disminuir incertidumbres de medición
- Conocer la masa de los vehículos que circulan por carretera permiten definir estrategias para incrementar la seguridad y reducir deterioro de caminos

INGENIERÍA VEHICULAR E INTEGRIDAD ESTRUCTURAL

(442) 2169777 ext. 3102

ivie@imt.mx

www.imt.mx

